Regularized variational principles for the perturbed Kepler problem

نویسندگان

چکیده

The goal of the paper is to develop a method that will combine use variational techniques with regularization methods in order study existence and multiplicity results for periodic Dirichlet problem associated perturbed Kepler systemx¨=−x|x|3+p(t),x∈Rd, where d≥1, p:R→Rd smooth T-periodic, T>0. critical points action functional proved via non-local change variables inspired by Levi-Civita Kustaanheimo-Stiefel techniques. As an application we prove has infinitely many generalized T-periodic solutions d=2 d=3, without any symmetry assumptions on p.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Perturbed projection and iterative algorithms for a system of general regularized nonconvex variational inequalities

* Correspondence: [email protected] Department of Mathematics Education and RINS, Gyeongsang National University, Chinju 660-701, Korea Full list of author information is available at the end of the article Abstract The purpose of this paper is to introduce a new system of general nonlinear regularized nonconvex variational inequalities and verify the equivalence between the proposed system and f...

متن کامل

Numerical solution of perturbed Kepler problem using a split operator technique

An efficient geometric integrator is proposed for solving the perturbed Kepler motion. This method is stable and accurate over long integration time, which makes it appropriate for treating problems in astrophysics, like solar system simulations, and atomic and molecular physics, like classical simulations of highly excited atoms in external fields. The key idea is to decompose the hamiltonian ...

متن کامل

Variational Pseudolikelihood for Regularized Ising Inference

I propose a variational approach to maximum pseudolikelihood inference of the Ising model. The variational algorithm is more computationally efficient, and does a better job predicting out-ofsample correlations than L2 regularized maximum pseudolikelihood inference as well as mean field and isolated spin pair approximations with pseudocount regularization. The key to the approach is a variation...

متن کامل

Regularized Mixed Variational-Like Inequalities

We use auxiliary principle technique coupled with iterative regularization method to suggest and analyze some new iterative methods for solving mixed variational-like inequalities. The convergence analysis of these new iterative schemes is considered under some suitable conditions. Some special cases are also discussed. Our method of proofs is very simple as compared with other methods. Our res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.107694